
Intel Architecture Software Developer’s Manual 38-1

Instruction Page Key 38

This section describes the information contained in the various sections of the instruction reference 
pages. It also explains the notational conventions and abbreviations used in these sections.

38.1 Instruction Format

The following is an example of the format used for each Intel Architecture instruction description:

CMC—Complement Carry Flag

38.1.1 Opcode Column

The “Opcode” column gives the complete object code produced for each form of the instruction. 
When possible, the codes are given as hexadecimal bytes, in the same order in which they appear in 
memory. Definitions of entries other than hexadecimal bytes are as follows:

• /digit—A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only 
the r/m (register or memory) operand. The reg field contains the digit that provides an 
extension to the instruction's opcode.

• /r— Indicates that the ModR/M byte of the instruction contains both a register operand and an 
r/m operand.

• cb, cw, cd, cp—A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the 
opcode that is used to specify a code offset and possibly a new value for the code segment 
register.

• ib, iw, id—A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction that 
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the 
operand is a signed value. All words and doublewords are given with the low-order byte first.

• +rb, +rw, +rd— A register code, from 0 through 7, added to the hexadecimal byte given at the 
left of the plus sign to form a single opcode byte. The register codes are given in Table 38-1.

• +i—A number used in floating-point instructions when one of the operands is ST(i) from the 
FPU register stack. The number i (which can range from 0 to 7) is added to the hexadecimal 
byte given at the left of the plus sign to form a single opcode byte.

Opcode Instruction Description

F5 CMC Complement carry flag



38-2 Intel Architecture Software Developer’s Manual

Instruction Page Key

38.1.2 Instruction Column

The “Instruction” column gives the syntax of the instruction statement as it would appear in an 
ASM386 program. The following is a list of the symbols used to represent operands in the 
instruction statements:

• rel8—A relative address in the range from 128 bytes before the end of the instruction to 127 
bytes after the end of the instruction.

• rel16 and rel32—A relative address within the same code segment as the instruction 
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16 bits; 
the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.

• ptr16:16 and ptr16:32—A far pointer, typically in a code segment different from that of the 
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The value 
to the left of the colon is a 16-bit selector or value destined for the code segment register. The 
value to the right corresponds to the offset within the destination segment. The ptr16:16 
symbol is used when the instruction's operand-size attribute is 16 bits; the ptr16:32 symbol is 
used when the operand-size attribute is 32 bits.

• r8—One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.

• r16—One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

• r32—One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP, EBP, 
ESI, or EDI.

• imm8—An immediate byte value. The imm8 symbol is a signed number between –128 and 
+127 inclusive. For instructions in which imm8 is combined with a word or doubleword 
operand, the immediate value is sign-extended to form a word or doubleword. The upper byte 
of the word is filled with the topmost bit of the immediate value.

• imm16—An immediate word value used for instructions whose operand-size attribute is 16 
bits. This is a number between –32,768 and +32,767 inclusive.

• imm32—An immediate doubleword value used for instructions whose operand-size 
attribute is 32 bits. It allows the use of a number between +2,147,483,647 and –
2,147,483,648 inclusive.

• r/m8—A byte operand that is either the contents of a byte general-purpose register (AL, BL, 
CL, DL, AH, BH, CH, and DH), or a byte from memory.

Table 38-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature

rb rw rd

AL = 0 AX = 0 EAX = 0

CL = 1 CX = 1 ECX = 1

DL = 2 DX = 2 EDX = 2

BL = 3 BX = 3 EBX = 3

rb rw rd

AH = 4 SP = 4 ESP = 4

CH = 5 BP = 5 EBP = 5

DH = 6 SI = 6 ESI = 6

BH = 7 DI = 7 EDI = 7



Intel Architecture Software Developer’s Manual 38-3

Instruction Page Key

• r/m16—A word general-purpose register or memory operand used for instructions whose 
operand-size attribute is 16 bits. The word general-purpose registers are: AX, BX, CX, DX, 
SP, BP, SI, and DI. The contents of memory are found at the address provided by the effective 
address computation.

• r/m32—A doubleword general-purpose register or memory operand used for instructions 
whose operand-size attribute is 32 bits. The doubleword general-purpose registers are: EAX, 
EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The contents of memory are found at the address 
provided by the effective address computation.

• m—A 16- or 32-bit operand in memory.

• m8—A byte operand in memory, usually expressed as a variable or array name, but pointed to 
by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string 
instructions and the XLAT instruction.

• m16—A word operand in memory, usually expressed as a variable or array name, but pointed 
to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string 
instructions.

• m32—A doubleword operand in memory, usually expressed as a variable or array name, but 
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the 
string instructions.

• m64—A memory quadword operand in memory. This nomenclature is used only with the 
CMPXCHG8B instruction.

• m16:16, m16:32—A memory operand containing a far pointer composed of two numbers. 
The number to the left of the colon corresponds to the pointer's segment selector. The number 
to the right corresponds to its offset.

• m16&32, m16&16, m32&32—A memory operand consisting of data item pairs whose sizes 
are indicated on the left and the right side of the ampersand. All memory addressing modes are 
allowed. The m16&16 and m32&32 operands are used by the BOUND instruction to provide 
an operand containing an upper and lower bounds for array indices. The m16&32 operand is 
used by LIDT and LGDT to provide a word with which to load the limit field, and a 
doubleword with which to load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32—A simple memory variable (memory offset) of type byte, word, 
or doubleword used by some variants of the MOV instruction. The actual address is given by a 
simple offset relative to the segment base. No ModR/M byte is used in the instruction. The 
number shown with moffs indicates its size, which is determined by the address-size attribute 
of the instruction. 

• Sreg—A segment register. The segment register bit assignments are ES=0, CS=1, SS=2, 
DS=3, FS=4, and GS=5.

• m32real, m64real, m80real—A single-, double-, and extended-real (respectively) floating-
point operand in memory.

• m16int, m32int, m64int—A word-, short-, and long-integer (respectively) floating-point 
operand in memory.

• ST or ST(0)—The top element of the FPU register stack.

• ST(i)—The ith element from the top of the FPU register stack. (i = 0 through 7)

• mm—An MMX™ register. The 64-bit MMX registers are: MM0 through MM7.

• mm/m32—The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit 
MMX registers are: MM0 through MM7. The contents of memory are found at the address 
provided by the effective address computation.



38-4 Intel Architecture Software Developer’s Manual

Instruction Page Key

• mm/m64—An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: 
MM0 through MM7. The contents of memory are found at the address provided by the 
effective address computation.

38.1.3 Description Column

The “Description” column following the “Instruction” column briefly explains the various forms of 
the instruction. The following “Description” and “Operation” sections contain more details of the 
instruction's operation.

38.1.4 Description

The “Description” section describes the purpose of the instructions and the required operands. It 
also discusses the effect of the instruction on flags.

38.2 Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of the 
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The 
algorithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”. 

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for an if 
statement, DO and OD for a do statement, or CASE ... OF and ESAC for a case statement.

• A register name implies the contents of the register. A register name enclosed in brackets 
implies the contents of the location whose address is contained in that register. For example, 
ES:[DI] indicates the contents of the location whose ES segment relative address is in register 
DI. [SI] indicates the contents of the address contained in register SI relative to SI’s default 
segment (DS) or overridden segment.

• Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates that an 
offset is read from the SI register if the current address-size attribute is 16 or is read from the 
ESI register if the address-size attribute is 32.

• Brackets are also used for memory operands, where they mean that the contents of the memory 
location is a segment-relative offset. For example, [SRC] indicates that the contents of the 
source operand is a segment-relative offset.

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, ≠, ≥, and ≤ are relational operators used to compare two values, meaning 
equal, not equal, greater or equal, less or equal, respectively. A relational expression such as A 
= B is TRUE if the value of A is equal to B; otherwise it is FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination operand should 
be shifted left or right, respectively, by the number of bits indicated by the count operand.

The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize—The OperandSize identifier represents the operand-size 
attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier represents 
the address-size attribute, which is either 16 or 32 bits. For example, the following pseudo-



Intel Architecture Software Developer’s Manual 38-5

Instruction Page Key

code indicates that the operand-size attribute depends on the form of the CMPS instruction 
used.

IF instruction = CMPSW
THEN OperandSize ← 16;
ELSE

IF instruction = CMPSD
THEN OperandSize ← 32;

FI;
FI;

See “Operand-Size and Address-Size Attributes”, for general guidelines on how these
attributes are determined.

• StackAddrSize—Represents the stack address-size attribute associated with the instruction, 
which has a value of 16 or 32 bits (see “Address-Size Attributes for Stack Accesses”.

• SRC—Represents the source operand.

• DEST—Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value)—Returns a value zero-extended to the operand-size attribute of the 
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of –10 
converts the byte from F6H to a doubleword value of 000000F6H. If the value passed to the 
ZeroExtend function and the operand-size attribute are the same size, ZeroExtend returns the 
value unaltered.

• SignExtend(value)—Returns a value sign-extended to the operand-size attribute of the 
instruction. For example, if the operand-size attribute is 32, sign extending a byte containing 
the value –10 converts the byte from F6H to a doubleword value of FFFFFFF6H. If the value 
passed to the SignExtend function and the operand-size attribute are the same size, SignExtend 
returns the value unaltered.

• SaturateSignedWordToSignedByte—Converts a signed 16-bit value to a signed 8-bit value. 
If the signed 16-bit value is less than –128, it is represented by the saturated value –128 (80H); 
if it is greater than 127, it is represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord—Converts a signed 32-bit value to a signed 16-bit 
value. If the signed 32-bit value is less than –32768, it is represented by the saturated value –
32768 (8000H); if it is greater than 32767, it is represented by the saturated value 32767 
(7FFFH).

• SaturateSignedWordToUnsignedByte—Converts a signed 16-bit value to an unsigned 8-bit 
value. If the signed 16-bit value is less than zero, it is represented by the saturated value zero 
(00H); if it is greater than 255, it is represented by the saturated value 255 (FFH).

• SaturateToSignedByte—Represents the result of an operation as a signed 8-bit value. If the 
result is less than –128, it is represented by the saturated value –128 (80H); if it is greater than 
127, it is represented by the saturated value 127 (7FH).

• SaturateToSignedWord—Represents the result of an operation as a signed 16-bit value. If 
the result is less than –32768, it is represented by the saturated value –32768 (8000H); if it is 
greater than 32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte—Represents the result of an operation as a signed 8-bit value. If 
the result is less than zero it is represented by the saturated value zero (00H); if it is greater 
than 255, it is represented by the saturated value 255 (FFH).



38-6 Intel Architecture Software Developer’s Manual

Instruction Page Key

• SaturateToUnsignedWord—Represents the result of an operation as a signed 16-bit value. If 
the result is less than zero it is represented by the saturated value zero (00H); if it is greater 
than 65535, it is represented by the saturated value 65535 (FFFFH).

• LowOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and stores the 
least significant word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and stores the 
most significant word of the doubleword result in the destination operand.

• Push(value)—Pushes a value onto the stack. The number of bytes pushed is determined by the 
operand-size attribute of the instruction. See the “Operation” section in “PUSH—Push Word 
or Doubleword Onto the Stack” in this chapter for more information on the push operation.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ← Pop(); 
assigns to EAX the 32-bit value from the top of the stack. Pop will return either a word or a 
doubleword depending on the operand-size attribute. See the “Operation” section in “POP—
Pop a Value from the Stack” for more information on the pop operation.

• PopRegisterStack—Marks the FPU ST(0) register as empty and increments the FPU register 
stack pointer (TOP) by 1.

• Switch-Tasks—Performs a standard task switch.

• Bit(BitBase, BitOffset)—Returns the value of a bit within a bit string, which is a sequence of 
bits in memory or a register. Bits are numbered from low-order to high-order within registers 
and within memory bytes. If the base operand is a register, the offset can be in the range 0..31. 
This offset addresses a bit within the indicated register. An example, the function Bit[EAX, 
21] is illustrated in Figure 38-1.

If BitBase is a memory address, BitOffset can range from –2 GBits to 2 GBits. The addressed 
bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)), 
where DIV is signed division with rounding towards negative infinity, and MOD returns a 
positive number. This operation is illustrated in Figure 38-2.

38.3 Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the 
instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic and 
logical instructions usually assign values to the status flags in a uniform manner (see “EFLAGS 
Cross-Reference and Condition Codes”). Non-conventional assignments are described in the 
“Operation” section. The values of flags listed as undefined may be changed by the instruction in 
an indeterminate manner. Flags that are not listed are unchanged by the instruction.

Figure 38-1. Bit Offset for BIT[EAX,21]

02131

BitOffset = 21



Intel Architecture Software Developer’s Manual 38-7

Instruction Page Key

38.4 FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how each 
instruction can affect the four condition code flags of the FPU status word.

38.5 Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruction 
is executed in protected mode and the reasons for the exceptions. Each exception is given a 
mnemonic that consists of a pound sign (#) followed by two letters and an optional error code in 
parentheses. For example, #GP(0) denotes a general protection exception with an error code of 0. 
Table 38-2 associates each two-letter mnemonic with the corresponding interrupt vector number 
and exception name. See Chapter 5, Interrupt and Exception Handling, in the Intel Architecture 
Software Developer’s Manual, Volume 3, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their operating systems 
to determine the actions taken when exceptions occur.

38.6 Real-Address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the 
instruction is executed in real-address mode.

Figure 38-2. Memory Bit Indexing

BitBase + 1

0777 5 0 0

BitBase - 2

0777 50 0

BitBase BitBase - 1

BitOffset = +13

BitOffset = -11

BitBase - 1BitBase



38-8 Intel Architecture Software Developer’s Manual

Instruction Page Key

NOTES:
1. The UD2 instruction was introduced in the Pentium® Pro processor.
2. This exception was introduced in the Intel486™ processor.
3. This exception was introduced in the Pentium processor and enhanced in the Pentium Pro processor.

38.7 Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the 
instruction is executed in virtual-8086 mode.

38.8 Floating-Point Exceptions

The “Floating-Point Exceptions” section lists additional exceptions that can occur when a floating-
point instruction is executed in any mode. All of these exception conditions result in a floating-
point error exception (#MF, vector number 16) being generated. Table 38-3 associates each one- or 
two-letter mnemonic with the corresponding exception name. See “Floating-Point Exception 
Conditions”, for a detailed description of these exceptions.

Table 38-2. Exception Mnemonics, Names, and Vector Numbers 

Vector 
No. Mnemonic Name Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (Undefined 
Opcode) UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math 
Coprocessor) Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an 
exception, an NMI, or an INTR.

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing 
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other 
protection checks.

14 #PF Page Fault Any memory reference.

16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.2

18 #MC Machine Check Model dependent.3



Intel Architecture Software Developer’s Manual 38-9

Instruction Page Key

Table 38-3. Floating-Point Exception Mnemonics and Names 

Vector 
No. Mnemonic Name Source

16 #IS

#IA

Floating-point invalid operation:

- Stack overflow or underflow

- Invalid arithmetic operation

- FPU stack overflow or underflow

- Invalid FPU arithmetic operation

16 #Z Floating-point divide-by-zero FPU divide-by-zero

16 #D Floating-point denormalized 
operation

Attempting to operate on a denormal 
number

16 #O Floating-point numeric overflow FPU numeric overflow

16 #U Floating-point numeric underflow FPU numeric underflow

16 #P Floating-point inexact result 
(precision) Inexact result (precision)



38-10 Intel Architecture Software Developer’s Manual

Instruction Page Key


